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Measurement of shear-induced self-diffusion in 
concentrated suspensions of spheres 

By DAVID LEIGHTONt AND ANDREAS ACRIVOS 
Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA 

(Received 16 August 1985 and in revised form 30 May 1986) 

A novel technique is presented for determining the coefficient of shear-induced 
particle self-diffusion in concentrated suspensions of solid spheres, which relies on the 
fact that this coefficient can be computed from the measured variations in the time 
taken by a single marked particle in the suspension to complete successive circuits 
in a Couette device. Since this method does not involve the direct measurement of 
the lateral position of the marked particle, it  requires a much simpler experiment than 
that used by Eckstein, Bailey & Shapiro (1977) which is shown to be constrained by 
wall effects at high particle concentration. The diffusion coefficient thus determined 
was found to be proportional to the product ?a2, where 7 is the shear rate and a 
the particle radius, and to have the asymptotic form 0 . 5 7 ~ ~ 4 ~  in the dilute limit when 
the particle concentration 4+O. 

1. Introduction 
The diffusion of neutrally buoyant small particles in suspensions has received much 

attention in recent years; however the bulk of the research in this area has been 
confined to the study of suspensions in which the particles were sufficiently small 
(a 5 1 pm) that particle diffusion was dominated by Brownian motion. In this paper 
we consider a different source of particle migration, that of shear-induced diffusion, 
which occurs in suspensions undergoing shear when the motion of the particles due 
to shear-induced interparticle interactions is much greater than that arising from 
Brownian motion. We thus confine ourselves to suspensions where the PBclet number 
(Pe = ypa3/kT) is large. This encompasses a wide range of important suspension flows 
such as the diffusion of red blood cells in arteries. 

To understand more fully the phenomenon of shear-induced self-diffusion, consider 
a single marked particle immersed in a viscous suspension of otherwise identical 
particles undergoing the simple shear flow u = ?y, where u is the effective fluid 
velocity in the x-direction and y is the shear rate. In the absence of any interparticle 
interactions, inertial forces, and Brownian-motion effects, the particle will not 
experience a drift and will simply translate along the streamlines in the flow. When 
this particle interacts with the other particles in the suspension, however, it will suffer 
a series of displacements normal to the fluid streamlines which, when taken together, 
constitute a random walk. Moreover, if the concentration distribution of particles in 
the suspension is a t  equilibrium (i.e. uniform for an unbounded linear shear flow), 
then the particle displacement due to this random walk will have zero mean. Thus, 
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since on average the particle will remain on its initial streamline, the process will be 
akin to classical self-diffusion which, in this case, is shear induced. 

It is important to note that the coefficient of self-diffusion associated with this 
mechanism is not identical with the effective diffusivity which governs the rate of 
migration of particles along gradients in concentration. This is because, owing in large 
part to the greater resistance expericnced by a particle when moving into regions of 
higher particle concentration compared to  those of lower concentration, its displace- 
ment across streamlines will have a non-zero mean in the presence of a gradient 
in particle concentration, and the particles will experience a net drift from regions 
of high to low concentration. As a consequence, in the latter case the effective 
diffusivity will consist of the sum of two terms: one arising from this non-random 
drift process and the other from the random self-diffusion. I n  concentrated suspen- 
sions of non-uniform composition, this diffusivity is dominated by the drift mecha- 
nism (Leighton & Acrivos 1986) since the resistance to particle motion increases 
rapidly as the particle enters the regions of high concentration. On the other hand, 
the mixing of labelled spheres in a suspension of uniform solids concentration is 
entirely controlled by the random self-diffusion process considered here since, owing 
to the absence of actual gradients in the total concentration of particles, the drift 
mechanism is also absent. 

It is instructive to  examine the self-diffusion that arises from purely viscous 
hydrodynamic interactions between spheres in a suspension. To this end, consider 
two isolated spheres freely suspended in a Newtonian fluid undergoing a linear shear 
flow, It is well known that as the two spheres approach each other under these 
conditions, they become temporarily displaced from their original streamlines, to 
which they return, however, at the end of the interaction. Since no net displacement 
has taken place, such interactions cannot lead to diffusion. In the presence of three 
or more interacting spheres, however, the interaction will, in general, no longer be 
symmetric and all of the spheres will experience some displacement from their original 
streamlines, leading to  the random walk and self-diffusion described above. I n  
addition, since the rate at which a given sphere interacts with two other spheres 
simultaneously is proportional to  y$z as the particle concentration $-to, and since 
the length of each step in the random walk is proportional to the particle radius a ,  
we should expect that in a suspension of spheres at low concentrations, the coefficient 
of self-diffusion should be proportional to yqPa2. It should be noted, however, that 
in a suspension consisting of anisotropic particles, such as ellipsoids or rods, 
two-particle interactions are in general not symmetric and hence could lead to finite 
displacements. One would expect therefore that, for such systems, the coefficient of 
self-diffusion would be proportional to $, rather than to  $z, in the dilute limit. 

It is an interesting consequence of the linearity of the governing flow equations 
a t  zero Reynolds number that, in the absence of any non-hydrodynamic forces, the 
random walks executed by particles in the suspension should be reversible, i.e. the 
particles should retrace their original paths following a reversal in the direction of 
flow. As a consequence, under these conditions, the self-diffusion described here 
constitutes an example of a microscopically reversible diffusion process such as that 
observed by Okagawa, Ennis & Mason (1978) for the diffusion of the orientation of 
a dilute suspension of initially uniformly oriented rods undergoing shear in a Couette 
device. Of course, all such microscopically reversible diffusion processes are very 
sensitive to  any loss of memory, and thus the slight irreversibilities inherent in any 
physical system, such as non-hydrodynamic surface forces and surface-roughness 
effects, will quickly render the mixing due to self-diffusion permanent in nature. 
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The purpose of this paper is to describe an experimental determination of the 
shear-induced coefficient of self-diffusion of spheres at low Reynolds number by 
observing the random walk of a marked particle immersed in a suspension undergoing 
shear in a Couette device. In  the next section we examine the only previous attempt 
at this type of measurement (Eckstein, Bailey & Shapiro 1977) and demonstrate that 
the data reduction procedure employed there had limitations which resulted in 
seriously underestimating the diffusion coefficients a t  the higher particle concentra- 
tions that were examined. We then present a new technique which, using only 
information about the time it takes for a marked particle to complete a circuit about 
a Couette device, provides an alternative method for evaluating this quantity. 

In $3  we describe the implementation of this experimental technique to the 
measurement of the shear-induced coefficient of self-diffusion of suspensions of 
spheres as a function of shear rate, particle radius, and concentration. As was 
expected from the dimensional arguments presented above, this parameter was found 
to be proportional to the shear rate and to the square of the particle radius, and also 
proportional to the square of the particle concentration in the dilute limit. The final 
section contains a summary of our results. 

2. Experimental approach 
The random migrations of particles in a suspension undergoing shear give rise to 

a diffusive process which may be characterized in terms of the shear-induced 
coefficient of self-diffusion. In this section we shall suggest a simple and accurate 
experimental technique for evaluating this quantity. 

2.1. Basic concepts 
We examine the phenomenon of self-diffusion by investigating the motion of a single 
marked sphere immersed in a suspension of hydrodynamically identical spheres 
undergoing the simple shear flow u = yy. By the ergodic hypothesis, the motion of 
a single sphere averaged over time may be related to the ensemble-average motion 
of all of the particles in the suspension. To begin with we need to recall that an isolated 
particle immersed in a shear field simply translates along the undisturbed streamlines 
of the flow and hence that v, its instantaneous velocity in the y-direction, will be zero 
at all times. In a suspension, however, the existence of interparticle interactions leads 
to non-zero random values of v that cause particle migrations which may, in turn, 
be related to the diffusion coefficient. Specifically, if we observe the location of the 
particle in the y-direction after each of N +  1 intervals in time, we may define a 
quantity Dobs : 

(2.1) 

with Ay: denoting the square of the increment Ayi, whose expectation value (i.e. its 
average value after many experiments) will be shown presently to approach the 
diffusion coefficient D as 

1 Ayt Dabs = - x - 9  

2NI-1 Ati 

(2.2) 

To determine the relationship between the observed and the actual diffusion 
coefficients, we begin by considering the particle motion in the y-direction. We have 
that 

(2.3) 
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where Ay2(t) denotes the square of the change in y ( t ) .  Hence, taking the expectation 
value (ensemble average) of Ay2, we obtain the integral 

ft ft 

The relationship between diffusion and migrations in the y-direction is complicated 
by periodic motions of the marked particle in addition to the truly diffusive random 
walks. For example, in a dilute suspension, periodic motions may arise from 
two-sphere interactions, as mentioned in 5 1.  Recall that  during such an interaction 
each sphere is displaced from its initial streamline, to which, however, i t  returns when 
the interaction has been completed. Clearly, although no net migration or diffusion 
has taken place, (Ay2) =I= 0 for this encounter. I n  more concentrated suspensions 
such two-sphere interactions are rare; however, in this case the particles tend to  
form aggregates which rotate in the shear field (Graham & Bird 1984; Graham & 
Steele 1984) and thereby induce a second source of periodic motion. The contribution 
ofperiodic motions to the observed diffusion coefficient may be estimated if we assume 
that the instantaneous velocity w of the particle is the sum of periodic and random 
terms, i.e. 

2, = w’(t) + v,(t), (2.6) 

where w’(t) is a random function with zero mean and w,(t) is the periodic motion. 
We thus obtain for the integrand of (2.5) 

(v(t1) v(t2)) = (vp(t1) ‘Up@,)) + (vp(t1) v’( tz))  + (v’(t1) vp(tz)) + (v’(t1) ‘ U ’ ( t 2 ) ) .  (2.7) 

The last term in (2.7) is simply R(7) ,  the autocorrelation function for the random 
motion, where 7 = t, - t , .  This function has a maximum a t  7 = 0 and decreases rapidly 
as 7 increases at a rate which depends on the source of the random motion. I n  the 
case under consideration here, particle migration is caused by shear-induced 
interparticle interactions; thus R(7) should vanish at  the end of each interaction. The 
timescale for such interactions is inversely proportional to the shear rate j ;  thus 
R(7)+0 for 7 $= l / j .  

Since the second and third terms of (2.7) vanish because of the assumed randomness 
of v’(t), we obtain 

f t  f t  f t  f t  

which may be rewritten as 

ft ft f t  

If, moreover, t $ l /j ,  then we may extend the upper limit of the first integral to 
t = 00 and replace the second integral by the expectation value (AYE) for the 
periodic motion. Thus 

(2.10) (Ay2(t)) x 2t s,” 4 7 )  d7-2 JOm 7R(7) d7+(A&). 

I n  an actual experiment some error will always be associated with the observation 



Shear-induced self-diffusion in  suspensions 113 

of the position of the particle. If we assume that this sighting error is random with 
some variance (Ayiight) then we may write 

(2.11) 

Finally, combining (2 .1) ,  (2.10) and (2.11),  and making use of the identity between 
the integral of the autocorrelation function 4 7 )  and D,  

<AY&) = <Ay2) + (AYiight). 

D = lom R(7) d7, (2 .12)  

we obtain for the expectation value of Dabs 

(2 .13)  

Thus the difference between the observed and actual diffusion coefficients may be 
reduced by increasing t, the length of time between successive observations, since the 
contribution to (Ay2) due to both the observation errors and the periodic motion 
do not grow with time. 

2.2. Previous experimental work 
The approach outlined above for calculating the diffusion coefficient is precisely that 
employed by Eckstein et al. (1977).  These authors carried out their measurements in 
a Couette device of major radius R = 0 in. and gap width W = 1.053 in. A single 
radioactively labelled particle was placed in a suspension of otherwise identical 
particles and its radial position (the y-direction in the shear field) and the elapsed 
time since the previous sighting were determined each time it passed an observation 
window. To reduce the contribution to the calculated diffusion coefficient arising from 
the periodic motions and the observation errors, successive transits were combined, 
thereby effectively increasing the time Att and the migration length Aya used in (2 .1)  
to obtain Dabs. 

The most critical assumption in the derivation of (2.13) was that the shear field 
was unbounded. We now consider the implications of this assumption. In an infinite 
shear field no constraints are placed on the motion of the migrating particle in the 
y-direction. Indeed, after a very long period of time and as a consequence of its 
random walk, this particle would have been expected to have wandered over great 
distances in the y-direction. In a Couette device, of course, the existence of the walls 
constrains such a migration and, as a consequence, limits the maximum diffusion 
coefficient that may be calculated correctly using (2 .1) .  In  fact, for larger values of 
D the migrations will be wall limited and the use of (2 .1)  will underestimate the actual 
diffusion coefficient. Specifically, in order to utilize (2 .1)  we must require that the 
diffusion length (given by (2DAt)t) of a particle migration be much less than the 
distance between the centre and the walls of the device. Thus 

(2 .14)  

Now, if the particle moves with the velocity of the midpoint of the channel, then the 
time between observations At will be given approximately by 

2xnR 2xnR A t = - -  - 
U vtw ’ (2.15) 
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where 2xR is the circumference of the Couette device and n is the number of successive 
observations that have been summed together, the product 2xnR thus equalling the 
total path length of the marked particle in the x-direction. Moreover, since from 
dimensional analysis we anticipate that the shear-induced diffusion coefficient will 
be proportional to the shear rate and the square of the particle radius (i.e. 
fi = D/.);a2), we may rewrite (2.14) using (2.15) as 

(2.16) 

The condition given in (2.16) places a constraint on the maximum dimensionless 
diffusion coefficient that can be measured using a specific particle size and experi- 
mental apparatus. To reduce the effects of wall limitations in their calculations, 
Eckstein et al. (1977) rejected all data except those for which migrations began in 
the central fifth of the Couette gap. They then required that this region be at  least 
two diffusion lengths from the wall. If the diffusion length based on the calculated 
diffusion coefficient satisfied this condition, then Dobs was assumed to be free of wall 
limitations. Unfortunately, as is demonstrated in detail in the Appendix, it is possible 
to show from the data available in Eckstein’s thesis (1975) that this condition was 
not sufficiently stringent and that, for large B, their experiment appears to have been 
wall limited, leading to a reported diffusion coefficient that was much less than the 
correct value. For sufficiently small values of B,  however, it is likely that wall 
limitation was avoided and that their reported values are correct. 

In  order to calculate the diffusion coefficient using (2 .1) ,  we must not only detect 
the marked particle, but also accurately measure its position in the narrow gap. Thus, 
the greatest difficulty in implementing the method used by Eckstein et al. (1977) to 
measure the diffusion coefficient arises from the fact that it is almost impossible to 
select a particle small enough to avoid wall limitations and yet still large enough for 
its position to be accurately measured. This suggests the desirability of formulating 
some alternative to (2 .1)  for calculating the diffusion coefficient which does not entail 
the measurement of the position of the particle within the gap. In the next section 
we do this by developing a relationship between the diffusion coefficient and 
variations in the times taken for a marked particle to complete successive transits 
of the Couette device. 

2.3. Determination of diffusion coeficients from transit times 

We begin our analysis by again considering the case of a single marked particle 
immersed in an infinite suspension undergoing simple shear flow. We wish to relate 
variations in the time it takes for the particle to travel a distance x,, (equivalent to 
2xnR in a Couette device) to migrations in the y-direction and hence to the diffusion 
coefficient in that direction. Clearly, since the velocity of the particle is a function 
of its position in the y-direction, any lateral migrations also lead to variations in the 
length of time taken by the particle to complete one circuit. To explicitly determine 
this relationship, we make use of the transition probability density P(x, ylt, 0,E) 
which is the probability density of the sphere being found at (x, y) at  some time t 
given that it was released at (0,c) at t = 0. This function is equal to the concentration 
distribution of a dye diffusing in the same shear flow which results from an initial 
distribution 6(z) 6(y- c) ,  and satisfies the convective diffusion equation : 

(2.17) 
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where we have assigned equal values to the diffusion coefficient in the x- and 
y-directions. Although the analysis may easily be extended to the case of unequal 
diffusivities, this will prove unnecessary since we shall demonstrate that diffusion in 
the z-direction is negligible. In writing (2.17) we have also assumed a homogeneous 
medium throughout the flow field, i.e. a constant shear rate and constant particle 
concentration, and have neglected all periodic motions of the particle. 

For a Couette device, the appropriate boundary conditions for (2.17) should be zero 
flux at y = 0 and y = W since the particle must be confined to this region; however, 
in keeping with our assumption of an infinite shear field (and also in order to obtain 
a closed-form solution) we shall apply the alternate condition that P vanishes at  
infinity. This should prove adequate provided that during the course of its migrations 
the particle remains far from the walls. We thus obtain the well-known (see, for 
example, Frankel & Acrivos 1968) self-similar solution : 

where 
C: = 2Dt, U; = a(.>’t)2 Dt + 2Dt. (2.19) 

The two terms in a: give the relative magnitude of convection and diffusion in the 
x-direction, whose ratio 

- 3w2 -- 12 - -- 2Dt - - diffusion 
convection :(.>‘t)2 Dt (.>‘t)2 n ( 2 ~ R ) ~  

(2.20) 

is likely to be very small for any experimental device (the ratio has a value of about 
2 x for the apparatus used by Eckstein 1975). Thus we shall neglect diffusion 
in the x-direction and let 

CT; = a(,y Dt. (2.21) 

We may now use the function P ( z ,  y I t ,  0,E) to develop the relationship between 
the diffusion coefficient in the y-direction and the difference between successive 
transit times. Let t be the first transit time, defined as the time for which x = xo, and 
t’ be the second transit time. The particle thus undergoes the two successive 
migrations : 

(09 0, El+ ( t ,  zo, Y)+  ( t+ t ’ ,  2x0, Y’). 
We wish to obtain p(t’ 1 t ) ,  the probability density of completing the second transit 

of the device in time t’ given that the first transit was completed in time t .  We may 
determine p(t’ I t )  in terms of several other probability density functions. The first of 
these is p’(y1 t )  which we define as the probability that a particle which has completed 
the transit x = xo in time t is at the lateral position y. This probability density can 
be calculated as follows. 

The joint probability density of the marked particle being at the point (x, y) after 
a time t ,  provided that its lateral position 5 at the start of the migration is unknown, 
is given by 

W 

P ( X ,  Y I t )  = J P(Z9 Y I t ,  0, E)P(E) 45, (2.22) 
- W  

where P(x, ylt,O,E) is given by (2.18) and p(E) is the probability density that the 
particle began the transit at  (0,E). The latter is, in general, a function of the 
experimental equipment. In  a Couette device we are observing the migration of the 
particle from a fixed position (the observation window), thus, since the velocity of 
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the suspending fluid is proportional to f ,  the flux of spheres passing the observation 
point will be greatest near the outer wall. The probability density of observing the 
marked particle at  f is therefore proportional to the particle flux at f ,  thus 

(2.23) 

Using the joint probability distribution p ( x ,  y I t) given in (2.22), it is then a simple 
matter to calculate the probability density over y:  

(2.24) 

J ~ ( 2 , ~  Y I t )  dy 
- O J  

which is normalized over y since the particle must exit at some lateral position. 
In order to obtain a closed-form expression for p ( z ,  y I t )  in (2.22) and for p’(y I t )  

in (2.24), we shall assume that p(6 )  = 2 f / W 2  for all values of 6, rather than 
just in the interval 0 < 6 < W as in (2.23). But, since the integrand of (2.22), 
P(x, y I t ,  0, g) p ( f ) ,  vanishes exponentially for f sufficiently different from y, this will 
be acceptable provided that the marked sphere is located several diffusion lengths 
away from the walls of the device. This is the same assumption originally made in 
deriving (2.18), and thus represents a consistent approximation. Consequently, using 
the expression for P(x, y I t ,  0 , f )  given in (2.18), we may now evaluate (2.22) and (2.24) 
to obtain, approximately, 

(2.25) 

which, for small cry, approximates a Gaussian distribution about the expected value 
y = x o / y t .  The function is skewed toward y < zo/yt since p ( f )  is not constant. 

The second probability density function that we require is p”(t’ I y), the probability 
density over t’ of completing the second transit of the device in time t’ given that 
the second migration began at a lateral position y. To begin with, we note that the 
cumulative probability of the particle completing the second transit during time t’ is 
given by 

(2.26) 

which is simply one minus the probability of the particle remaining in the region 
-XI < x’ < x,; thus, the probability density that the particle would have exited 
from this region during the period [t’, t’ + dt’] is 

9 ( t ’ , y )  = 1 -  P ( Z ’ ,  y’ I t ’ ,  0, y) dy‘ dx’, 
-ca 

which may be evaluated to yield 

(2.28) 

where uz, = +(yt‘)z Dt’. Again, for small uz,, this function approaches a Gaussian 
distribution about the expected value t‘ = zo/yy. 
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The desired probability density p(t’ I t )  is therefore the product of p“(t‘ I y) and 
p’(y I t ) ,  integrated over all possible values of y, i.e. 

(2.29) 

which may be evaluated to yield 

(2t2 + 3tt’ - t” )  (2tj2 + 3tt’ - t 2 )  2 Dt2t’’ 
tt’(t + t ’ ) 2  

and which relates the diffusion coefficient in the y-direction to variations in the 
observed transit times t and t‘. Note that for small values of the diffusion coefficient, 
(2 .30)  simply states that the difference between successive transit times approximates 
a Gaussian distribution with a variance that is proportional to the diffusion coefficient 
and the fifth power of the transit time. 

In  the derivation of (2.30) we have assumed that during the course of its random 
migrations, the particle will remain far from the walls of the experimental device. 
For a Couette device, this condition is equivalent to requiring that, during the course 
of the migration, the distance between the average position of the particle and the 
walls of the device be much greater than the characteristic diffusion length of the 
migration. But since in our experiments no direct measurement is made of the particle 
position, it is necessary to recast this condition into one involving the transit time. 
Let us require, then, that the probability of the particle encountering the walls at 
the end of the second migration (i.e. y” < 0 or y“ > W )  be less than 0.005, given that 
the first transit was completed in time t .  For small values of the diffusion coefficient, 
the probability distribution for y” is approximately Gaussian with mean zo/yt and 
standard deviation ($Dt)k Thus, the condition imposed above is equivalent to 
requiring that the mean position be at least three standard deviations from the walls, 
which should limit the error arising from wall effects to less than 1 % . The condition 
on t arising from the inner wall is then given by 

Dt 
24 - 

(xo/Yt)2 -= 
and that from the outer wall is 

(2 .31)  

(2.32) 

Consequently, for a fixed experimental geometry, these conditions place an upper 
bound on the diffusion coefficient which can be measured without introducing errors 
due to wall limitations. 

An examination of the exponential part of p(t’ I t )  reveals that the expression may 
be recast into a simpler form if we rewrite it as a probability density over a new 
variable a, defined as 

(t‘ - t ) 2  

$ V ( t  + t ’ )  (7/zo)2 * 
012 = (2.33) 
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at’ 1 1  
aa (27~); (2D)i exp[g] p*(a 1 t )  = --p(t’ I t )  = -- 

1 t ( t ’ - t )  1 Dt3t’ 
x 1+-- [ 2 t ’ ( t+  t ’ )  +32t2 + 3tt’-t’’ 

which can be simplified further by recognizing that, for small D, the function is 
exponentially small except near a = 0. Thus, expanding (2.33) and (2.34) for small 
a we have 

(2.35) 

and 

+L 12 Dt (9’ (I + 0 (( :$)’ a))], (2.36) 

which, for small values of the diffusion coefficient, approaches a Gaussian distribution 
with zero mean and variance 2 0 ,  independent of the first transit time t .  Using this 
expression for p*(a  I t ) ,  we have then for the variance of a : 

m 

- m  

= 2 D ( 1 - A (E)’ Dt + 0 (( g)’ Dt)’) , (2.37) 

which, on substituting the constraint given in (2.31), approaches 2 0 ,  with a 
maximum deviation from this value of less than 2 %, 

We conclude, therefore, that i t  is possible to calculate the shear-induced coefficient 
of self-diffusion by making use of successive measurements of the time it takes a 
marked particle to complete a circuit of a Couette device. Thus, if we observe a series 
of N +  1 transit times ti, we find from (2.37) that the diffusion coefficient will be given 
approximately by 

where 
(2.38) 

and where the conditions (2.31) and (2.32) on the first transit time must be satisfied 
to ensure that the migrations are not wall limited. 

The determination of the diffusion coefficient through the use of (2.38) is potentially 
much more accuratethan through (2.1) which requires the direct measurement of the 
position of the particle in the gap. This improvement in accuracy arises from two 
sources. First, for a particular absolute observation error, the relative error in the 
measured transit time Aterror/At will be much less than the corresponding error in 
the lateral position Ay,,,,,/Ay, because the circumference of the Couette device is 
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much greater than the gap width. The ratio of these two relative errors is approx- 
imately equal to the ratio of the circumference to  the gap width which, for the device 
used by Eckstein (1975), results in a reduction in error of nearly two orders of 
magnitude. 

Secondly, the existence of periodic (non-random) motions is less important to 
migrations in the x-direction (and hence to  transit times) than to lateral migrations. 
This is because, although the total contribution of periodic motion to migrations in 
both the x- and y-directions may be the same, random migrations in the x-direction, 
which result from random lateral migrations to faster or slower moving streamlines, 
are amplified by the convection term yt while periodic migrations in the y-direction 
are not. As a consequence, the contribution of periodic motion to the observed 
diffusion coefficient calculated using (2.38) will again be less than that using (2.1) by 
a factor 2nR/W, rendering this source of error negligible as well. 

In  any real Couette device the calculation of the diffusion coefficient using (2.38) 
is complicated by the fact that the device posseses finite curvature. Indeed, in the 
device used by Eckstein (1975) the ratio W/R was about i ,  which is non-negligible. 
As a consequence, both the local shear rate (to which the shear-induced diffusion 
coefficient is proportional) and the path length for a complete transit of the device 
will be functions of the radial position in the gap. If the diffusion coefficient is small, 
however, then the variation in the particle position during a migration will also be 
small and both 7 and xo may be treated as effectively constant for each migration. 
The error in this approximation will be O((+Dt)i/R) which, for the device used by 
Eckstein (1975) and the condition on D given by (2.30), is less than 1 %. 

If we further assume the flow in the gap to be Newtonian (a good approximation 
at low particle concentrations) then it is a simple matter to relate the observed transit 
times to the average position of the particle in the gap during each migration and 
hence to effective values of 7 and xo. We thus obtain 

4AV 

(2.39) 

where E is given by 

E = “(2+3/( R 1 +q, 
tis the average of the two successive transit times t and t’,  R is the radius of the inner 
wall of the Couette device, and v is the frequency of rotation of the outer wall of the 
Couette device. In  terms of these variables we can define an effective value of a: 

(t’ - t ) 2  

= +ye,, t V ( t  + t ’ )  (y/xo):ffy (2.40) 

whose variance is equal to the dimensionless diffusion coefficient 2l3 to within a few 
percent. 

It should be noted that since the dimensionless diffusion coefficient calculated from 
experimental data by means of (2.40) is proportional to y-3, rather than to Y-l as 
in the technique employed by Eckstein et al. (1977), it will be much more sensitive 
to errors in the estimate of the shear rate, such as those resulting from the existence 
of wall slip regions. Karnis, Goldsmith & Mason (1966) provide observations of the 
velocity distribution in Couette flow as a function of particle size and concentration, 
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FIQURE 1 .  The Couette device: A, bob; B, cup. The suspension is confined in the annular region 
between bob and cup, supported by a layer of mercury. 

however, and from these measurements we may conclude that, for an experimental 
geometry such as that used by Eckstein (and also that employed in our experi- 
mentation), particles that are sufficiently small to avoid wall limitations will also 
be small enough that the deviation from Newtonian flow in the gap is negligible. 

3. Experimental work 
In this section we present the details of our measurements of the shear induced 

coefficient of self-diffusion. The basic approach consisted of measuring the successive 
times taken by a single marked sphere, immersed in a suspension of otherwise 
identical particles, to complete a circuit of a Couette device. Once this information 
was obtained, the shear-induced diffusion coefficient was calculated from (2.38) and 
(2.40). 

3.1. Materials 
The detection apparatus used by Eckstein and his co-workers consisted of a 
radioactively labelled particle and a radiation detector which was capable of not only 
detecting the marked particle as it passed an observation window, but also of 
measuring its position within the gap. In our work, however, a simpler apparatus was 
employed since the data reduction method developed here obviated the need to 
directly measure the position of the particle within the gap. Thus, the particle was 
detected optically: a single opaque sphere was immersed in a suspension of 
transparent, but otherwise identical, spheres, and the index of refraction of the 
suspending fluid was matched to that of the transparent spheres, enabling us to see 
the marked particle. A stopwatch was employed to measure the time taken by the 
particle to complete each circuit of the device, as determined by its successive 
crossings of a line marked on the stationary inner cylinder. 

The suspension containing the marked particle was placed in the Couette device 
depicted in figure 1. The radius of the inner wall of the device (the Couette bob) was 
9.73 cm and the outer wall (the Couette cup) was 11.74 cm, yielding a gap width of 
2.01 cm. The height of the fluid in the gap varied, depending on the total quantity 
of fluid placed in the gap, but was typically about 4 em. Since an optical detection 
technique was employed, the outer wall of the Couette device was constructed of 
Plexiglas and was mounted on an aluminum base. The large eccentricity inherent in 
the commercially available acrylic ring used for this outer wall was greatly reduced 
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by machining the ring in its mounting to a tolerance of f 50 pm. The inner wall was 
machined from an aluminum block and was circular to within & 25 pm. The Couette 
device was mounted on a model R-17 Weissenberg Rheogoniometer obtained from 
Sangamo Transducers, Inc. Both the bob and cup of the Couette device were 
accurately aligned with the axis of rotation of the cup. 

The solids used in our experiment consisted of two fractions that were sieved from 
a single lot of 600 pm mean diameter acrylic particles, obtained from ICI, which were 
approximately spherical. Only a small fraction of these were fused or otherwise 
eccentric. The particles were also observed to contain bubbles of varying size, which 
led to some polydispersity in the density. To reduce the degree of polydispersity, the 
fraction containing the larger spheres was density segregated in an aqueous potassium 
iodide solution of density 1.18 g/cm3. The fraction of spheres that sank in this fluid 
was collected and dried. These particles were found to have an average density of 
1.178 g/cm3 and an optically determined average size of 645 pm plus a size distrib- 
ution characterized by the standard deviation f 46 pm. Unfortunately, the quantity 
of the smaller spheres collected through sieving was insufficient to permit any density 
segregation, nor was their density measured ; however, since they came from the same 
lot as the larger spheres, their density was assumed to be similar. This was later 
verified from the very small rise velocity exhibited by the particles when immersed 
in the pure fluid whose density matched that of the 645 pm density segregated 
spheres. The small spheres had an optically determined size distribution of 
389f22 pm. 

The suspending fluid in all experiments consisted of a solution composed of 40.67 yo 
glycerin, 22.82 % ethylene glycol, and 36.51 % styrene glycol by weight. Since styrene 
glycol is a solid at room temperature (22 "C), the solution was prepared at 70 "C in 
a stoppered flask and then cooled. The solution has a viscosity of 2.8 P and exhibited 
no shear thickening or thinning behaviour over the range of shear rates used in our 
experiments. It was, however, supersaturated at room temperature in that, after 
several days, the styrene glycol formed visible crystals (about 1 mm in size) in a 
suspension at rest. Also, in the presence of shear the rate of crystallization was 
significantly higher so that crystals appeared during the course of our measurements. 
This rapid crystallization was attributed to the increase in fluid mixing due to the 
interaction of the spheres in the sheared suspension. 

The density and the index of refraction of the solution were matched to those of 
the acrylic spheres. Since the index of refraction of the fluid matched that of the 
acrylic, spheres that did not contain bubbles could be seen only in outline whereas 
the bubbles present in other particles showed up clearly. When suspensions at particle 
concentrations below 20 % were sheared in the Couette device, they were observed 
to stratify somewhat, the particles without bubbles concentrating near the bottom 
and the more buoyant ones migrating to the top. From this we see that the pure-fluid 
density was within the narrow range of densities of the 645 pm spheres. At higher 
concentrations the suspension appeared to be well mixed at the shear rates used in 
our experimentation. 

Two marked particles were used in the experiments, one taken from each size 
fraction. These were prepared by spray painting a quantity of spheres from both 
fractions with orange enamel spray paint, and then selecting one from each lot that 
had a size comparable to the average size of each fraction. The thin coat of enamel 
did not appear to affect the density of the marked particles, in that they showed no 
tendency to migrate to the top or bottom of a sheared suspension, but only seemed 
to add to their surface roughness which it was hoped was not significant enough to 
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influence their diffusion. The optically measured sizes of the two particles were 
645 pm and 421 pm, respectively. 

To conduct the experiments, the Couette bob was lowered into the cup until the 
two were nearly in contact, as is depicted in figure 1. Five pounds of mercury were 
then poured into the base of the device and the resulting layer, approximately 1 cm 
in depth, provided an essentially stress-free lower boundary to the suspension. The 
aluminum base plate was brushed with a small quantity of glycerin prior to  the 
addition of the mercury in order to protect i t  from the latter. A known quantity of 
the pure fluid was then poured into the gap, followed by the addition of unmarked 
acrylic spheres until the desired concentration was attained. The marked sphere was 
inserted and the suspension was thoroughly mixed, first with a spatula and then by 
shearing in the Couette device for a total length of strain of about 4000. The 
measurements were begun once the suspension appeared to  have reached equilibrium. 

3.2. Results 
In order to  ensure that any observed migrations of the marked particle in the 
suspension were due only to diffusive migrations, i t  was necessary to rule out the 
existence of any significant secondary currents in the Couette gap. Their presence 
would have increased the observed diffusion coefficient by increasing the magnitude 
of the migrations in the y-direction which, in turn, would have affected the observed 
transit times. The strength of these possible secondary currents were determined by 
examining the behaviour of an isolated particle in the Couette device. The 645 pm 
marked sphere was immersed in the pure suspending fluid in the Couette gap and 
sheared a t  shear rates from 1.5 s-l to  6 s-l. The drift of the particle in the radial (y) 
direction could then be determined from variations in the time that the particle took 
to complete a transit of the device. When the particle was placed a t  the midpoint 
of the upper half of the channel, it drifted toward the inner wall in such a way that 
the transit time changed by about 0.6 yo during each transit. Conversely, when placed 
at  the midpoint of the lower half of the channel, the particle migrated toward the 
outer wall with approximately the same magnitude of velocity. The drift velocity did 
not seem to be affected by variations in the shear rate over the range covered by our 
experiments, nor was it possible to determine the cause of the secondary currents; 
however, they were sufficiently small so as not to affect the observed diffusion 
coefficient, a t  least a t  the higher suspension concentrations investigated. For 
example, a suspension of 645 pm spheres a t  30 yo concentration exhibited a charac- 
teristic fluctuation in transit time of about 10 yo, well above the 0.6 % observed for 
the secondary currents. I n  more dilute suspensions, however, the magnitude of the 
diffusive migrations became smaller, and thus for these syscems the marked particle 
was carefully placed near the centre of the device where the secondary currents 
appeared to be smallest. 

The diffusion-coefficient experiments were conducted a t  solids concentrations 
ranging from 4.6 to  40 yo for the 645 pm acrylic spheres and 15 to 25 yo for the 389 pm 
spheres. I n  all cases the data consisted of a series of observed successive transit times 
which could be combined using (2.38) and (2.40) to obtain the diffusion coefficient. 
Pairs of transit times were used in the calculations only if the first transit time was 
such that the average position of the particle during the first transit was in the central 
third of the Couette gap. I n  order to reduce the contribution of particle sighting errors 
and of periodic motions, the successive transit times were summed in the data 
reduction procedure, i.e. the time taken to  complete n circuits of the device was used 
rather than the time to complete a single transit. The benefit of this, discussed in 
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FIQIJRE 2. Calculated diffusion coefficient v5. the number of successive transits summed. Data for 
645 pm spheres, 10% concentration, y = 3 s - I .  The curve is given by Bobs = 0.0049f0.0016 n-s 
which corresponds to an observation error of uObs x kO.10 s. 

$2.3, was especially apparent a t  the lowest concentrations where the magnitudes of 
the sighting errors and of the diffusive migrations for a single transit were comparable. 
This may be seen graphically in figure 2 where we have plotted the calculated diffusion 
coefficient Bobs versus the number n of transits summed in the data reduction scheme 
for a suspension of 645 pm spheres a t  10 yo solids concentration. Note that when the 
transits were taken singly, a very high diffusion coefficient was calculated which 
decreased rapidly to a lower asymptotic value as the number of jumps summed 
increased. I n  this case, the diffusion coefficient was sufficiently small that the 
migrations were not wall limited even after summing six transits. The fact that  the 
calculated diffusion coefficient in figure 2 approached an asymptotic value with an 
increase in the number of transits summed shows that, in the absence of wall 
limitations, the mean-square variation in the transit time is proportional to the 
average of the fifth power of the transit time, i.e. ( A t 2 )  - ( t 5 )  for large t .  Moreover, 
since variations in the transit time result from variations in the velocity of the particle 
which, in turn, is a function only of its radial position within the gap, the existence 
of a finite asymptote demonstrates that  the mean-spare displacement of the particle 
in the radial direction grows linearly with time, and that the observed phenomenon 
is indeed a diffusion process. 

We may also use the data presented in figure 2 to estimate the magnitude of our 
experimental error in the observation of transit times. Thus, if we assume that each 
observation of the particle has associated with it an error with variance c& which 
may arise both from purely observational errors as well as from any particle motion 
that is not associated with actual migration, such as a periodic motion, then we may 
estimate the influence of this error on the calculated diffusion coefficient. Specifically, 
for small values of the diffusion coefficient, the difference between successive transit 
times is much less than the transit times themselves. As a consequence, the primary 
contribution to the error in the variable ai used in calculating the diffusion coefficient 
from (2.38) will result from errors in the measurement of this difference. Thus, the 
variance of ai will be given approximately by 

Next, if we let ai = a f ) + a T )  where is the contribution to at from the actual 

5 F L M  177 
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FIQURE 3. Calculated diffusion coefficient us. the number of successiye transits summed. Data for 
645 pm spheres, 28.1 % concentration, y = 6 s-l. 

random migration of the marked particle, and further define, by analogy with (2.38), 
the diffusion coefficient arising from this motion as 

" -  

then, for large N, we obtain 

Moreover, if the particle is located, on average, in the centre of the channel, then 
the characteristic transit time will be t, x 2 W / j x ,  and, since for our Couette device 
5, = n2nR, (3.3) reduces in dimensionless form to 

where Bobs = Bobs/ja2 and B(t) = D(t) / ja2 .  We thus expect that the value of the 
diffusion coefficient calculated from a given set of data should approach an asymptotic 
value as n-3 for an increasing number of transits n summed in the calculation, 
provided, of course, that the data are not wall limited. Examination of the data 
presented in figure 2 confirms this expectation and yields an estimate of the 
observational error of about + O . l  s. 

A markedly different behaviour is depicted in figure 3 which presents the data for 
a 28.1 % suspension of 645 pm spheres. In  this case the observed diffusion coefficient 
was much greater; thus the calculated value, at least initially, did not change greatly 
as n increased. For n 2 3, however, the calculated diffusion coefficient was found to 
decrease, a behaviour that was attributed to the onset of wall limitation. The point 
at which the restrictions imposed by (2.31) and (2.32) were exceeded is given by the 
vertical line in figure 3, which lies ahead of the region where the observed diffusion 
coefficient is seen to drop off. The best estimate of the actual diffusion coefficient waa 
therefore taken to be the observed value that was obtained from summing the largest 
possible number of transits without violating (2.31) and (2.32). 

In addition to the error, given in (2.13), that arises from using finite transit times, 
the diffusion coefficient is also subject to a statistical error, analogous to that 
computed for any variance, due to the finite number of available observations. This 
error is governed by the chi-square probability distribution ; however, for a large 
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FIGURE 4. Observed coefficient of self-diffusion. Note that b is plotted in the form d/qP. 0,  
a = 323 pm, 7 = 3 s-'; A, a = 323 pm, 7 = 6 s-l; 0, a = 195 pm, 7 = 3 5-l. Curve is best fit to 
data, fi = 0.5@ (1 +0.09 e71). 

number of observations, the distribution of observed values of the diffusion coefficient 
should approach the Gaussian form where the one standard-deviation error in the 
calculated value is given approximately by 

where N is the number of observations. 
Using the procedure outlined above, we have found the shear-induced coefficient 

of self-diffusion to be proportional to ?a2, as was expected from dimensional 
arguments, and to be approximately proportional to the square of the particle 
concentration 4 for dilute suspensions and to increase somewhat more rapidly than 
that at higher q5. A plot of the experimentally determined diffusion coefficients is given 
in figure 4, together with the 2a error bars arising from the statistical source described 
by (3.5). The number of transit times used in the experiments varied, but typically 
approximately 200 observations were used in each calculation. 

At  this stage it is instructive to compare the diffusion coefficients measured in this 
work with those obtained by Eckstein et al. (1977). As may be seen from figure 5,  
our observations are in good agreement with theirs for concentrations up to 20 %. 
Beyond this, however, the diffusion coefficients measured in this work continue to 
grow rapidly (our measurements at concentrations above 32 % are off-scale in this 
figure), whereas Eckstein et al.'s approach a constant value. The discrepancy suggests 
that, as will be discussed in more detail in the Appendix, the diffusion coefficients 
observed by Eckstein et al. (1977) at high concentrations were limited by the presence 
of the walls. 

The greatest experimental difficulty that we encountered was in maintaining a 
uniform concentration throughout the Couette gap. This arose because of the 
polydisperse density of the particles, which caused the particles without bubbles to 
sink and those with a greater buoyancy to float. The problem was especially severe 
at lower concentrations where the diffusion coefficient was also small since diffusion, 
of course, would have tended to render the suspension more homogeneous. As a 
consequence, although every effort was made to mix the suspensions as thoroughly 
as possible and to place the marked particle carefully, the concentration correspon- 
ding to the observed diffusion coefficients was undoubtedly subject to considerable 
measurement error. 

5-2 
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FIQURE 5. Comparison of the diffusion coefficient measured in this paper with that observed by 
Eckstein et a2. (1977). Measured in this work: 0, a = 323 pm, y = 3 s-l; A, a = 323 pm, 7 = 6 s-l; 
0, a = 195 pm, = 3 8-l. Measured by Eckstein et al.: 0 ,  a = 1600 pm; 3 = 10 5-1 (data 
taken from Eckstein et al. (1977), figure 2). Solid curve is best fit to experimental data 
fi = 0.5@ ( 1  + 0.09 e7#). 

A second source of difficulty arose from the crystallization of the styrene glycol 
from the suspending fluid during the course of the experiments. Since this occurred 
only gradually as the suspension was sheared, it was absent from the early stages of 
the experiments and only became visible toward the end. Separately, viscosity 
measurements on suspensions with 4 = 0.40 showed that crystallization influenced 
the effective viscosity only after approximately 100 minutes of shearing at  

= 2.4 s-l, which implies that the diffusion measurements were probably unaffected 
up to that point since the viscosity is a more rapidly increasing function of 4 than 
is D. Besides, as no differences were detected between the diffusion coefficients 
measured before and after the onset of crystallization, it appears unlikely that this 
phenomenon significantly affected our observations. Further experimentation is 
necessary to resolve this issue, however. 

4. Summary 
In this paper we have developed a relationship between the shear-induced 

coefficient of self-diffusion parallel to gradients in fluid velocity and variations in the 
time it takes for a marked particle immersed in the suspension to complete a circuit 
of a Couette device. Since this only requires that we measure the transit time of a 
marked particle in a Couette device and obviates the need of also determining the 
particle position within the Couette gap, it greatly simplifies the experimental 
apparatus required by Eckstein et al. (1977). The technique was employed to measure 
the coefficient of self-diffusion in suspensions of 645 pm and 389 pm acrylic spheres 
as a function of concentration and shear rate. 

The diffusion coefficient was found to be proportional to the shear rate and the 
square of the particle radius and to be an increasing function of concentration 4, 
approximately equal to 0.5 q52 a t  low concentrations. This is in contrast to the linear 
dependence of the diffusion coefficient on concentration that was reported for dilute 
suspensions by Eckstein et al. (1977). The result arrived at here is, however, more in 
accordance with what would have been expected at low Reynolds numbers since, in 
the absence of non-hydrodynamic contact forces (which should be absent in dilute 
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suspensions), at least three interacting spheres are required for any permanent 
displacement of the particles to occur; hence, we conclude that the dilute-limit 
diffusion coefficient should be proportional to q52 as was observed in our experiments. 

The coefficient of self-diffusion at high concentrations (4 > 30 %) measured here, 
while greater than those reported by Eckstein et al. (1977), are still much less than 
the effective diffusion coefficient measured using a different approach (Leighton & 
Acrivos 1986). This is as would be expected since, as was described in $ 1, the effective 
diffusion coefficient is the sum of both random and non-random drift components of 
which the latter was shown (Leighton & Acrivos 1986) to increase very rapidly with 
concentration - approximately in proportion to (q52/pr) (dpJdq5) where pLr is the 
relative viscosity of the suspension. Hence, this component would be expected to 
dominate self-diffusion at high q5 since the coefficient of self-diffusion was observed 
to grow only slightly more rapidly than q52 at concentrations above 30 %. 

Although the experimentally determined values of the diffusion coefficient exhib- 
ited a considerable degree of scatter, they appear to be approximately correct and 
demonstrate the efficacy of using Couette transit times for this purpose. 

This work was supported in part by the Department of Energy, under grant nos. 
80-ER10659 and 85-ER13328, by the National Science Foundation under grant no. 
CPE 81-17299, by a National Science Foundation fellowship for D.T. L. and by Nato 
Research grant no. 538.83. 

Appendix. Analysis of the diffusion-coefficient measurement technique due 
to Eckstein, Bailey & Shapiro (1977) 

In his dissertation work, Eckstein (1975) developed a technique for measuring the 
shear-induced coefficient of self-diffusion of a suspension of neutrally buoyant 
spherical particles in a linear shear field. His apparatus consisted of a concentric 
cylinder Couette device with a gap width W = 1.053 in. and a major radius R = 6 in. 
A single radioactively labelled sphere was placed in a slurry of otherwise identical 
spheres and its radial position was determined by a radiation detector. Since the 
detector was fixed in place whereas the outer cylinder rotated, the labelled sphere 
would be observed once each time it passed the detector. Thus the data that were 
obtained from this device consisted of a series of times between successive 
observations of the particle and the associated change in the radial position. For such 
data, it is possible to calculate the observed value of the diffusion coefficient Dabs: 

which, as was described in $2, will approach the asymptotic value of the diffusion 
coefficient D as 

becomes small provided that the migrations in the radial direction are not limited 
by the presence of the walls. The relationship between Dabs and D under this 
assumption is given by 
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where (Ay~,,,,) is some average value of the increase in the observed variance over 
that due to strictly random migrations. A discussion of the sources of this error term 
was also given in $2. In  this Appendix we shall examine in detail Eckstein's data 
reduction technique and, using data available in his thesis (Eckstein 1975), shall show 
that i t  seriously underestimated the values of the diffusion coefficient a t  the high 
concentrations, owing to  wall limitations. 

Experimentally, Eckstein attempted to  minimize the difference between Dabs and 
D by summing successive jumps until the combined At for the composite jump was 
greater than some chosen value Atmin. These composite jumps were then used in 
conjunction with (2 .1)  to  calculate a value of the diffusion coefficient. I n  order the 
evaluate Eckstein's reduction procedure, we require knowledge of the average value 
( l /At)  that  corresponds to a particular choice of Atmin. Without the experimental 
data i t  is impossible to  determine this relationship exactly except, of course, that the 
average of the inverse transit times is less than the inverse of the minimum transit 
time. We shall estimate the deviation of ( l /At)  from l/Atmin as follows. 

A particle whose average position during the course of its migration is in the central 
region of the Couette gap will complete a circuit of the device in a time t = 4 x R / j  W 
equal to the circumference divided by the mid-channel velocity. After a sufficiently 
long period of time has elapsed from the initial observation (at t = 0) the probability 
of detecting the particle in a time interval t < At < t+dt will become independent 
oft ,  i.e. the position of the particle in the gap in the direction of motion will become 
random. Moreover, if the particle moves with a velocity such that i t  completes a 
circuit of the device in time t ,  then the probability density of first observing a particle 
at time t after a time Atmin has passed is approximately given by 

Atmin < t < Atmin + t ,  
p(t )  x { 

0, t > Atmin+i. 

Thus, we may write 

as an estimate for ( l /At)  which approaches the value of l/Atmin when Atmin/t% 1. 
We shall now use (A 1) and the estimated value of ( l /At)  to examine the calculated 

diffusion coefficient as a function of Atmin given by Eckstein (1975) in his figure (6.4) 
and reproduced here (figure 6). In this figure the diffusion coefficient (solid diamonds) 
is plotted versus the minimum time interval used in its calculation from a shear rate 
j = 1 0  s-l, sphere radius a = & in., and suspension concentration $ = 40 yo. Under 
these conditions the expected particle transit time i i s  approximately 7.2 s. The first 
experimental point given by Eckstein is for Atmin = 4 s. The probability of the 
labelled sphere having completed a circuit of the device in less than this time is very 
low for the shear rate used, thus we shall take ( l /At)  = l / t= 1/7 .2  s-l for this case. 
All other values of ( l /At )  are estimated using (A 3). We may thus reduce the data 
of figure 6 to the tabular form given in table 1, and then fit them by a linear regression 
to (A 1)  to  obtain an estimate of the actual diffusion coefficient and the magnitude 
of the error. We thus obtain 

Dobs = 0.0010 +0.11 - cm2/s, (it) 
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FIGURE 6. Observed diffision coefficient as a function of Atmin. Reproduced from Eckstein (1975, 
figure 6.4). +, diffusion coefficient; 0, diffusionEoefficient corrected using (A 1) and (AygrrOr). 

Atmin (a) 4 10 20 30 40 50 60 
(llAt,) 0.14 0.075 0.043 0.030 0.023 0.019 0.016 
Dabs (cm”s) 0.0162 0.0098 0.0057 0.0043 0.0035 0.0028 0.0028 

TABLE 1.  Diffusion coefficients observed by Eckstein (1975) and estimated value of ( l /AtJ in his 
experiments aa a function of Atmin. 

with a correlation coefficient p = 0.999. Or, in dimensionless terms 

Bobs = Dobs/fa2 = o ~ ~ o + o ~ ~  (A 5) 

where the fact that the correlation coefficient p is so close to unity indicates that (A 5 )  
provides a very good fit to the data. 

Eckstein (1975) chose a value of Atmin = 20 s for the reduction of his data and, 
therefore, reported Bobs = 0.023 for this experiment. From the analysis given above, 
however, it appears that this choice of Atmin was incorrect since, if the system were 
not wall limited, a corrected value of = 4 x would have been calculated instead 
from (A 5). The latter is nearly an order of magnitude below that reported by Eckstein 
(1975) and very close to zero given their experimental error. In  addition, from the 
fit of the data to (A l),  we find that the estimated error (AyErrOr) is very large, 
approximately 4.4u2, i.e. more than an order of magnitude greater than that 
estimated by Eckstein. 

Using (A 1) and his estimated value of (AyError), Eckstein calculated a corrected 
value of the diffusion coefficient, which is given by the open diamonds in figure 6. 
But based on the analysis leading to (A i ) ,  we would expect that if his estimate of 
(AyE,,,,) were accurate, then his corrected values would be independent of Atmin, 
which clearly they are not. It must be concluded, therefore, that either the sources 
of error in Eckstein’s experiment were much greater than he estimated, and hence 
that the actual diffusion coefficient was much lower than reported, or the assumption 
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FIGURE 7. Distribution of particle sightings. Reproduced from Eckstein (1975, figure 7.2). 

that the particle migrations were not limited by the presence of the walls was 
incorrect. We shall now examine this latter possibility in more detail. 

The most extreme example of wall limitation occurs when the diffusion coefficient 
is sufficiently high that each observation of the position of the particle within the 
gap is uncorrelated with the previous one. Then if we were to continue to use (2.1) 
to calculate an observed value of the diffusion coefficient (the underlying assumption 
that the migrations are not limited by the walls of the device no longer being valid), 
we would obtain for an infinite diffusion coefficient 

(A 6) 
1 

At ’ = i(Ay2) (-) 
where (Ay2) may be calculated from the probability distribution of observing the 
particle at a position y. Eckstein provides this distribution in figure 7.2 of his thesis 
(reproduced here as figure 7) ,  which was for the same experimental conditions used 
to obtain the data given in figure 6. It is interesting to note that the distribution of 
particle observations given in figure 7 is very different from the linear profile expected 
from theory (2.23). This discrepancy suggests that the particle concentration near 
the walls of the Couette device was less than the average concentration across the 
gap. Although the mechanism leading to such a depletion in the wall regions 
(evidently more than could be accounted for by simple wall exclusion) is unclear, 
it is likely to be a result of the large particle diameter to gap width ratio used in this 
experiment, about 1 : 8. Since in our experimentation this ratio was less than 1 : 33, 
the wall-region depletion implied by figure 7 should have been much less significant. 

I n  his data reduction procedure, Eckstein only counted migrations that originated 
in the central fifth of the Couette channel in an effort to  minimize the effects of the 
wall. Recognizing this, we obtain 

w 3w/5 

@Y2) = J J (Y-Y’)”(Y)P’(Y’) dY’ dY, (A 7)  
0 2W/5 

wherep(y) is the distribution given in figure 7 and p‘(y) is the probability distribution 
of particle observations that occur in the central fifth of the channel : 

/ r3w15 

Integrating (A 7 )  numerically, we obtain (Ay2) x 0.29 cm2. 
Given the estimated values of ( l / A t )  determined earlier, we may use (A 6) to 



Shear-induced self-diffusion in suspensions 131 

4 n i n  (9) 4 10 20 30 40 50 60 

Dobs (cm”s) 0.0162 0.0098 0.0057 0.0043 0.0035 0.0028 0.0028 
Dombs (cm2/s) 0.0203 0.0109 0.0062 0.0043 0.0033 0.0027 0.0023 

TABLE 2. Diffusion coefficients observed by Eckstein (1975) and those estimated for complete wall 
limitation by (A 6) as a function of Atmin. 

compare the values of Dobs calculated by Eckstein (table 1) to those that would have 
been observed for an infinite diffusion coefficient. This is done in table 2 and, as may 
be seen, the assumption that the actual diffusion coefficient was infinite can account 
for the reported Dabs. The slight discrepancy between Dizi and Dabs for small values 
of Atmin indicates that the true diffusion coefficient, although perhaps much greater 
than the calculated value, was not infinite. 

From the comparison given in table 2 it seems probable, therefore, that Eckstein’s 
data were strongly influenced by the walls, at least for the particular experiment 
analysed here, the only experiment for which the data relevant to this analysis are 
available. Moreover, since Eckstein chose a value of Atmin = 20 s for the conditions 

in. (the conditions of the experiment we have examined) and scaled 
his choice of Atmin for all other experiments (denoted with a prime) such that 

= 10 s-l, a = 

i t  appears likely that all of his calculated diffusion coefficients were wall limited to 
a similar degree, at least for experiments where the concentration, and hence the 
diffusion coefficient, was large. At  a sufficiently low concentration, however, we 
anticipate that the diffusion coefficient becomes small enough that the migrations are 
no longer wall limited. It is impossible to determine this point from Eckstein’s data 
alone; however, from a comparison with the results of our experiments, i t  appears 
to occur at approximately 20 %. Thus values of the diffusion coefficient observed by 
Eckstein (1975) a t  smaller concentrations are unlikely to have been influenced by wall 
effects. 
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